| 257C Flhe Copy ESD RECORD COPY

RETURN TO
ESD-TR-69-193 SCIENTIFIC & TECHNICAL INFORMATION DIVISION
- (ESTI), BUILDING 1211

| ESD ACCESSION LIST
ESTI Call Ne. 66967

Cepy Ne. ok P oys. '
INCREMENTAL METHODS FOR COMPUTER GRAPHICS

D. Cohen

April 1969

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Sponsored by: Advanced Research Projects Agency
Washington, D. C.

ARPA Order No. 952

This document has been
approved for public release and
sale; its distribution is
unlimited.

(Prepared under Contract No. F19628-68-C-0379 by Harvard University,
Cambridge, Massachusetts,)

1‘:"\'00(1‘i WS'SD

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TR-69-193

INCREMENTAL METHODS FOR COMPUTER GRAPHICS

D. Cohen

April 1969

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

L. G. Hanscom Field, Bedford, Massachusetts

Sponsored by: Advanced Research Projects Agency
Washington, D, C,

ARPA Order No, 952

This document has been
approved for public release and
sale; its distribution is
unlimited,

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University,
Cambridge, Massachusetts.)

FOREWORD

This report describes work accomplished under Contract F-19628-
68-C-0379 from June 1968 through April 1969. This contract is concerned
with research on computer graphics and computer networking. In
particular it is directed to the development of new insights into the
creation, analysis and presentation of information. This report is
concerned with incremental methods for computer graphics.

The report is based on a thesis submitted April 30, 1969 by Mr.
Dan Cohen to Harvard University, Division of Engineering and Applied
Physics in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

Professor Anthony G. Oettinger was the principal investigator for
the contract. Dr. Lawrence G. Roberts was the ARPA director. Dr.
Sylvia R. Mayer was the ARPA agent at Electronic Systems Division.
Lt John McLean of Electronic Systems Division provided technical
guidance.

This technical report has been reviewed and is approved.

(> ta E
N l,'\,“ '\ .v_(l‘(k’

J\ ')s /‘Zi(/(;g e\,

SYLVIA R. MAYER WILLIAM F. HBISfE}‘ olorT‘l USAF
Research Psychologist Chief, Command Systems Division
Command Systems Division Directorate of Planning & Technology

Directorate of Planning & Technology

i 8 oo

Lawrence G. Roberts
Special Assistant for
Information Sciences, ARPA

ii

ABSTRACT

This report is concerned with incremental methods for computer
graphics. The application of the incremental approach to some advanced
problems in computer graphics is discussed and demonstrated. In
Section II, the problem of fast curve generation and display is discussed.
This section uses the mathematical approach to curves as a perspective
projection of polynomial-curves in higher-dimensional spaces. Section
ITII, also discusses a fast generation of curves, but using another mathe-
matical approach, the linear-differences method, only two-dimensional
curves are discussed. Section IV, shows how to make the Warnock
algorithm, for hidden lines elimination, incremental. Section V, dis-
cusses the generation of half-tone images, in real-time. The technique
suggested there requires a special-purpose hardware to be built. Section
VI, discusses an incremental method for finding the intersection of given
line-segments. The technique suggested there also requires a special
hardware for implementation.

il

SECTION

SECTION

LL.
II.
II.
II.

II.

1I.

II.

1
2
3
4

7

SECTION

III.
III.

I11. 3

III.

III.
III.
III.
III.

III.

0 g9 o U;

TABLE OF CONTENTS

I : INTRODUCTION
II : DISPLAY OF CURVES

Introduction
On 2D Curves (Perspective Approach)

On 3D Curves (Perspective Approach)

The Incremental Method for Fast Generation of
Polynomials

The Errors in the Incremental Computation of
Polynomials

Comparison of the Perspective and the Linear
Differences Methods for Curve Generation

Mathematical Justifications
Il ; LINEAR DIFFERENCES CURVES

Summary
The Equivalence of the Various Definitions

Obtaining the Generating Matrix for a Conic (Implicit
Form)

Obtaining the Generating Matrix for a Conic
(Geometric Approach)

Characterization of Conics by the Generating Matrices
On the Spacing Between Successive Points
Straight Lines as Degenerate Conics

On Curves Created by Matrices with a Non-unit
Determinant

Programming Aspects of Coding the Linear Difference
Scheme

III.10 Examples

SECTION IV : INCREMENTAL METHODS FOR HIDDEN-LINE

v
Iv

il
a1l

IV.3

v

.4

ELIMINATION

Introduction
A Brief Discussion of the Warnock Algorithm
The Incremental Approach to the Warnock Algorithm

The Incremental Solution for the In/Out Problem for
Polygons

12
15
18
25
25
27

29

31
33
36
38

39

41
42

56

56
5if’
58

63

SECTION V : PRODUCTION OF HALF-TONE IMAGES IN
REAL TIME

V.1l Introduction
V.2 Line Controller for Generalized Coordinates
V.3 Production of TV-scan Images

V.4 Production of Radar Scan Images
SECTION VI : FAST INTERSECTING OF LINES

VI.1 Introduction
VI.2 The Sutherland Interpolator
VI.3 Lines Intersector

VI.4 On String-Line Intersecting

REFERENCES

vi

70

70
71
73
78

83

83
83
90
97

103

Figure No.
1I.4.1

II. 4.2

11.4.3

1I. 4.4

III. 4.1

II1. 4.2
III.
11I.
III.
III.
III.
III.
III.
III.
III.
I1I.
III.
III.
Iv.
IV.

IV.

v

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

10.

3.

3.

3.

3

1

10
11

12

LIST OF FIGURES

Page
Schematic drawing of the hardware for the
forward differences technique 9
The behavior graph of the system in Fig. II. 4.1 10
The hardware for the backward differences
technique 11
The behavior graph of the system in.Fig. II.4.3 11

2 A
The ellipse =5 + %5 = 1 32
S M

A tilted hyperbola 33
A circle (generated by the LDM) 44
A circle (generated by the PM) 45
Two ellipses 46
A family of hyperbolas 47
A circular spiral 48
An elliptic spiral 49
A star 50
A star spiral Bl
A quadratic parabola 52
A cubic 53
An oscillated hyperbola 54
A family of curves 55
A window subdivided into 4 subwindows 58
Subwindows divided into subwindows 59
A tree representation of Figure IV. 3.2 60

The relations between the polygon/window relations

vii

62

Figure No.
IV. 3. 5.

iv.4.1
iv.4.2
iv.4.3

A |

2.2

< < < < 0% o<
[\N]
w

VIi.2.4
VI.2.5
VI. 2.6

VL. 3. 1

VI. 3.2
VI.3.3
VI. 4.1
VI. 4.2

VIi.4.3

Page
The simplest Warnock algorithm for line drawing 64
A polygon describing the digit "4" 66
A Karnaugh map for the signs conditions 67
Examples for window/line relations 69
Intensity profile 72
A shader for constants intensities 74
A shader for linear intensities g
A scheme for generating X and Y 79
A multiplication free scheme for computing X and Y 80
An {rz,g{} shading system 82
A line intersecting the y-axis 84
X scaling does not change the intersection 86
Using the Sutherland interpolator as a divider 87
A schematic drawing of the Sutherland interpolator 88
The states of the Sutherland interpolator 90
The control logic for the Sutherland interpolator 91
Intersection of segments, which are not parallel
to the axes 93
Figure VI. 3.1 after the rotation 93
The segments {PA’ PB} are trivially rejected 96
A line and a string 98
The line/segments intersector 100
The operation of the 1ine/segments intersector 101

viii

SECTION I

INTRODUCTION

The spirit of the incremental methods is to organize the steps
of a computation so that each step can use information prepared by
earlier steps. Such procedures eliminate redundant repetitive

computation, and simplify each computation step.

In this thesis I will exhibit five examples of incremental methods.
The examples shown here all apply to computer graphics. Computer
graphics is particularly responsive to the application of incremental
methods because a large amount of information must be processed
quickly to produce a picture, while the basic operations to be per-
formed on the data are relatively simple. Computer graphics is
also particularly receptive to incremental techniques because con-
ventional general-purpose computers do not do this job nearly as
well as it can be done by incremental techniques. Moreover, the
incremental approach is applicable to a wide variety of computing

problems, and not to computer graphics only.

The five examples exhibited here are: linear-difference scheme
for curve generation, perspective scheme for curve generation, the
Warnock algorithm for hidden-line elimination, half-tone image pro-

duction and a fast lines-intersecting technique.

The incremental method for perspective curves, which is described
in Section II, was implemented in the three-dimensional-graphic-
hardware project at Harvard, and was simulated on the PDP-1 computer.
The incremental method for generating curves, which is described in
Section III, is used by a PDP-1 system for drawing curves on a CRT,
from which the pictures appended:t.'o that section were taken. The
search-ordering strategy which n&akes the 'University of Utah hidden-
line elimination algorithm incremental was incorporated into their
‘hidden-line elimination system bér_,its author, John Warnock. This
approach is described in Section IV. A'.',-»".variation of the incremental
method for half-tone image production, which is described in Section V,

was implemented in hardware by the General Electric Company.

SECTION 1II

DISPLAY OF CURVES

(II. 1) Introduction

The ability to display straight lines on a CRT is a standard
feature of these devices. However, many applications require
curvilinear display. Typical schematic drawings like block-diagrams
and logic-designs can be drawn with straight lines only, but attempts
to display real world objects like machined components require curve

display since the world is not rectilinear.

Any curved segment can be displayed accurately up to the scope
resolution by displaying a set of points close enough together on the
curve. Curve display by separate calculation and separate storage
of each point is not feasible for many applications which are restricted
by real time requirements or by storage limitation. A similar diffi-
culty, existing in the past for straight lines, has been resolved by the
introduction of line-generators which generate all the points of a line
segment1 given its end points. Carrying this approach forward to
curves leads to a "curve-generator", based upon a small number of

parameters, which can generate a curve segment in real time.

Two incremental curve generators are suggested in this work.
One is based on a three-dimensional perspective approach (Section TI)
and the other on a two-dimensional approach (Section III). Both
generate points on the curve so that these points may then be connected

by a line generator.

Each of these curve generators can generate a family of curves.
The two families are not the same, but both include all the conics. A
comparison of these generators is made in (II. 6). The mathematical
justification of our methods, and of the assumptions used in this section

can be found in (II. 7).

1 ’
up to the scope resolution

(II.2) On 2D Curves (Perspective Approach)

As the displaying screen is a 2D surface, 2D curves are the core
of any curve representation. The ability to specify and display curves
in 2D is the key to representing curves in any space. In (II.7.1), we
prove that any conic segment in 2D is a perspective image of the
canbnic-parabola in 3D1, or of its images under linear transforma-
tions. Therefore the problem of specifying a conic segment in 2D
is equivalent to the problem of finding the linear transformation of
the canonic-parabola which transforms it into a 3D curve whose 3D
perspective projection is the desired conic. As any linear trans-
formation can be realized by a matrix multiplication, the problem of
specifying a conic segment is replaced by the problem of finding the
matrix of the linear transformation. This concept of perspective

images was already discussed in the late 19th century[z]’ [3]

The family of conics includes ellipses and circles, hyperbolas,
parabolas and straight lines as a degenerate case. Conics never
intersect themselves and never have an inflection point, as shown in
(II. 7. 1). 1f more general curves are required, one can use an
"mth-degree-conic" which is defined to be the perspective projection
of a 3D curve whose components are polynomials of degree m in some
parameter t. "Conics" usually mean "2nd-degree-conics" but I will
not distinguish them from the general case, in spite of the importance
of second degree conics for many applications. Properties of the
mth-degree-conics can be found in an unpublished memorandum by
Professor S. A. Coons and in [4]. In general, the higher m is, the
more general is the mth-degree-conic, but of course, more conditions
are required to specify it uniquely. In order to simplify the notation
hereafter, we will use m = 3. The changes required for other values

of m are self-evident.

2
1The canonic parabola in 3D is the curve given by (x,y,z) = (t ,t, 1).

The explicit form of the mth-degree-conic (for m = 3) is:

_ B 3 2

x = x(t) = x3t t x,t + x;t + X0
= = 3 2

y =y(t) = yst” +y,t +y ity
_ _ 3 2

z = z(t) —z.3t +zZt +zlt+zO

which can also be written as:

(x,y,2) = (t7,t%,t,1)

A computational implementation of this representation, for generating
a sequence of points on the curve may consist of storing {t3,t2, t, 1}
and using a matrix multiplier1 for getting the (x,y, z) values. This is
very useful for devices which happen to have a matrix multiplier
capable of performing the multiplication of a [1%X(m+1)] vector by a
[(m+1)%3] matrix. The scheme can be improved by generating the
sequence {t3, tz,t, 1} instead of storing it. This sequence can be
generated very fast incrementally. However generating the polyno-
mials x(t), y(t) and z(t) can be done as fast as generating the {t3,t2,t, 1}
sequence. The curve generator should therefore generate successive
values of x(t), y(t), z(t) and project these points on the scope plane by
dividing x(t) and y(t) by z(t) to get the scope coordinates of the points2

An fXk matrix multiplier is a device which can store an £xk matrix A
and multiply it by any given 1x{ vector V, to find the 1xk vector VA.
This operation requires £Xk multiplications and (£-1)xk additions. By
using parallel processing, a matrix multiplier can execute the multi-
plication in £ multiply-~times only. Such a 4%4 matrix multiplier is de-
scribed in the final report of Harvard contract XG-2972.

It is easy to see that if the viewing plane is z=1, and the projection
center is the origin, then the point (x,y,z) is projected on the point
X

= %, 1) on the viewing plane.

The scope coordinates are given to a line generator which generates
line segments between the curve points while the new points are
generated. The incremental method for generating successive values

of {x(t), y(t), z(t)} is described in (II. 4) below.

(II. 3) On 3D Curves (Perspective Approach}

For many applications it is very important to specify curves
which satisfy conditions in the 3D space. After meeting these condi-
tions, the curves are projected into the 2D space for display. One
can easily generalize the 2D methods to 3D by introducing one more
component and treating a 3D curve as a perspective projection of some
4D curve into 3D space. As in the 2D case, specifying a curve is
equivalent to finding some matrix. Because of the additional compo-
nent, there are more unknowns than in 2D in the equations defining
the matrix and more conditions are required to specify curves uniquely.
The perspective transformation from the 4D space to the 3D space (for
curve definition) and the transformation from the 3D space to the 2D
space '(for display) can be combined in one perspective transformation,

in order to simplify the displaying process.

Consider the following example: let {x(t), vty =(t), w(t)} be a

curve in the 4D space. Its perspective projection into the 3D space is
x(t) y(t) =z(t)
w(t)’ w(t)’ w(t)
is the following curve:

wi(t) * w(t)’? w(t) "~ w(t)] = \z(t)’ z(t)

the following curve: (whose 2D perspective projection

Note that there is no need to evaluate w(t) at all. There is only need
to evaluate {x(t), Flt)s z(t)} and to display {x(t)/z(t), y(t)/z(t)}, exactly
as in the 2D case, since the 3D curve is displayed in 2D regardless of

the dimension of the space in which it is defined.

(II. 4) The Incremental Method for Fast Generation of Polynomials

For each of the 3 components {x(t), y(t), z(t)} we have to evaluate
a polynomial of degree m, at some set of values of the parameter

{to, Estoe s tN}. For simplicity we choose the range of t to be [0, 1]

and t. = %, i.e., equally spaced values of t. The usual techniques

of using multiplications to evaluate polynomials take too much time.
The fast way to evaluate these polynomials is the finite differences
scheme [4] which is an incremental method, that prepares information
from each point to be used in the generation of the next point. This
incremental method requires only m addition for evaluating a poly-
nomial of degree m. These additions can be executed simultaneously,
and thus need only one addition time. The implementation of this
method as described here requires m adders for each polynomial. If
there is only one adder for each polynomial, the method can be modi-

fied as shown below.

We have 3 polynomials x(t), y(t), and z(t) to evaluate. As the
generating procedure is the same for all of them, we consider here

one polynomial only, say x(t).

We define: 0 = Nl, the space between successive values of t.
In the usual fashion we define the forward difference operator [5]:
af(s) = f(s+0) - f(s). If X, is defined as X, = x(t;) = x(i0) then

x.,1 - % We define further: a'ts) = 128 Yaia)] and. 2% s) = fis)

Note that as is well known, AT - m 6m, and this is independent of

Ax. =
1

t. From the definition of Azf(s) it follows that

Axi=A[A Xi]:A X1 - A X s
and

-1 _f-1 £

A x.l_H—A Xi+AXi’

Write the last equation for £ = 1,2, 3 and get:

Xip1 = X FAx (£=1)
Ax . =a4x +a =2
i+l i T (£=2)
2 2 3
A = AT+ Ak, (£=3)

This can be written as:

A x 0 1 1 0 A x
= or F,. =SF
i 0 0 1 1/ a% i+l
3 3
Axi+1 0O 0 0 1 AT x

where Fi is the Forward differences vector at x = X, and S is the

above matrix.

We define the backward difference operator by Vi(s) = f(s) - f(s-0).
w2 and vi are defined similarly to AO and AZ. In general sz(s) = Azf(s-lﬁ).

It is easy to see that Vot o = V‘eﬂlxi 9

i+l i+l”

Substituting £ = 1,2, 3 gives:

X1 - 5PV ox
V x =V x + sz
141 : 141
2 2 3
v .
Xip1 =V Xt Vix

2 2 3 2 3
v = -
Xipl SV X P VIR = ViR VX,
2 2 3
v = s
X 41 ¥t Vixg =V ox + Vix + Vix,
x = x. +V x = x+Vx+V2x+V3
i+l i i+l i i i %

This can be written as:

X 1 1 1 1 x
V x o 1 1 1 V x :
= or B = TB
sz 00 1 1 sz i+l i
3 3
v
V-x i+ 0 0 0 1 x 1

where Bi is the Backward differences vector at x = X and T is the
above matrix. We have in mind placing the current values of X,

in' 23 mei (or the V‘exi) in a set of fast registers. The successive

values in the X register are used for the display and the other regis-
ters are used for conveying information from each point to its
descendants. The & 'x register does not have to be modified as t

= thm = m!ém,

: m_m
changes over its range, because A"t Let us

factorize S and T to indicate the computational procedure:

- N - NI N ¢ \
1 1 0O 1 0 0 Of|1l 0 0 Offl 1 0 O
0110 01 0 0{j0O1 1 0|01 0 O

S = = = A3A2A1
0 011 0 01 1{jlo ol ojf0 01 O

L0001 000 1llo oo 1llo oo

I T 1 1 1 0 0|1 0 0 Of|1 0 O O

0111 01 0 o0[|0O1 1 O0f{01 0 O
T = = = A A A

0 011 0 01 0ofj0 01 0|f0 O 1 1 1753
0 0 01 0 00 1|0 OO 1](0 0O IJ
~ / L J L J N
A, is the operation of adding the Vi (or the Azx) register to the vi i,
(or the Az-lx) register. S is equivalent to executing Al’ then AZ’

then A3. T is equivalent to the execution of the same operations, in
reverse order. There are only three additions involved in either of
these methods. However, there is a basic difference between them.
In the forward difference scheme, each "new" value A!x.

i+l
only on "old" values Akxi, but in the backward difference scheme, each

depends

"new" value sz.+1 depends on the current values of the registers,
lold" Vtxi and "new" V£+1xi+1. It is therefore possible to execute all
the additions for the forward difference method scheme in parallel,
consuming only one addition time for evaluation successive values of
the polynomials. This however requires a great deal of hardware.
The backward difference scheme is more economical for sequential
computation, but consumes m addition-times. Schematic drawings

for the two methods are shown in Figures II. 4.1 and II. 4. 3.

The behavior gra,phs1 of these systems are shown in Figures

II. 4.2 and II. 4. 4. The behavior graph of the forward difference scheme

1Behavior graphs are sort of "occurrence-graph" [18].

X]-—>d
(i) INITIAL LOADING Iff
() LOADING ¥ i
(a) ADDITION }"‘ 1
(d) DISPLAY l i
ay
A X

R3S J""i3

as

AX =g

Figure I11.4.1 : Schematic drawing of the hardware for the forward differences

technique.

=2 30-=—=—

Figure 11.4.2 : The behavior graph of the system in figure I1.4.1

10

Figure 1I1.4.3 :

Figure 11.4.4 :

The hardware for the backward differences technique.

f, {a as f3 az ¥2 o

The behavior graph of the system in figure 11.4.3

L1

dl

14

has 3 parallel paths which indicate the parallel processing. It is
possible to introduce some parallelism in the backward difference
scheme, but this requires more hardware than is needed for the
forward difference scheme. However the critical operation is the
division. If the division is slower than 3 additions (as it always is
in digital systems) there is no sense in providing the extra hardware
which is required by the forward difference method. In this case,
both the forward and the backward difference method require on

divide -time.

The forward difference scheme is initialized by loading Azxi(O)
into the registers, and the backward difference scheme is initialized

by loading szi(O) :

In (II. 7. 2) we show how the initial differences {szi(O)} and
{Azxi(O)} can be found.

(II. 5) The Errors in the Incremental Computation of Polynomials

The iteration process which is described in the preceding
subsection may introduce some errors due to the finite precision of
the machine. We cannot, in general, better the precision, but we
can modify the iterations to minimize the errors where they are most

important, at the end-points (e.g., for curve closure).

The source of the errors is not the iteration process itself
(which is multiplication free) but the propagation of the errors in the

initial values of the differences.

We can change the initial values of the differences in order to
make the iterations end as close as possible to the prespecified end~-
point. We show now a method which converges to an end-point which
is within il machine resolution points from the given end-point, where

2
N is the number of iterations.

Consider first the forward diffecrences scheme. Define:

e =[1,0,0,0l.and S = I + H,

12

01 0 o x(n9)

o 0 1 o A x(nd)
H-= and F(n) = 2

0 0 o 1 £°x(nb)

0 0 0 0 23x(nb)

We showed that F(n) = SnF(O) and x(nd) = eF(n). The computed end-
point is x(NOJ) = eSNF(O). Let ;{e be the given end-point. Hence, the
error introduced by the iterations is:

E =% -x(N)=%_ - [x(0) + Nax(0) + (12\1) 2%x(0) + (1;‘) 23x(0)].
Dividing the error by (1;1) is a correction for A3x(0). The remainder

; 2

of this division divided by I?:I is a correction for A x(0), and the
remainder of the second division divided by N is a correction for Ax(0).
These 3 corrections reduce the magnitude of the error to be less than
N. By changing Ax(0) by one resolution unit, the magnitude of the error

can be reduced not to exceed -g-

This correction process can be programmed as follows:

(1) %_ - [x(0) + Nax(0) + (N) 22x(0) + (N) 23%(0)] —~E

2 3
E
(2) 3 ~7¢3
B

(3) a3x(0) + e =5 A5 5(0)
) TR (N) e
3/%3
(4) = >e,
Z)

(5) Azx(O) t e, — AZX(O)

2 (s (3=

(6) N > ey

13

(7) ax(0) + e}~ Ax(0)

15y ' E - (13\‘)% . (12\1) e, - Ne] >T then 4x(0) +1—>ax(0)

(9) if [E - (13\‘)% 2 (12\1) e, - NeyJ < -3 then ax(0) - 1—>4x(0)

For the backward difference scheme a similar correcting method

works by using:

x(nbd) = eTnB(O) where T = TIck H + H2 + H3

and

TP =1+ nH + [n + (;)]H2+[n+2(2) 4 (g)]H3

If we do not want to change Ax(0), and we wish also to get the
right value for Ax(N) then another correcting scheme can be applied.

Expand F(N) = SVF(0) and get:

x(N) = x(0) + Nax(0) + (1;) 2%5(0) + (13\‘) A3x(0)
Ax(N) = ax(0) + N a%x(0) + (1;) A>3
a2 x(N) = 22x(0) + N a3x(0)
A x(N) = 23x(0)

x(0) and x(N) are given by:
x(0) = dx
x{(N)=a +b_+c +d
X X X X
Ax(0) and Ax(N) can be found directly by:

Ax(0) a53+b52+c5
X X X

Ax(N) = a (63+ 362+ 30) +b (62+ 20) + ¢ O
X X X

14

Using these values, Azx(O) and A3x(0) are found from the following

equations:

(N) 22x(0) + (N) £3%(0) = x(N) - %(0) - Nax({0)

2 3
N ax(0) + (1;) 22500 = Axln) = A%l

Using the values of Azx(O) and A3x(0) which satisfy (as close as possible)
these equations reduce the errors in x(N) and Ax(N). For backward
differences a similar method exists.

(II. 6) Comparison of the Perspective and the Linear Differences Methods
for Curve Generation

The LDM (Linear Difference Method) is described in Section III.
In this section I have described the PM (Perspective Method) for curve

generation.
I compare the two methods, the LDM and the PM (for m=2) accord-
ing to:

- complexity of points generation,
- variety of curves and speed of generation,
- complexity of the mathematics involved, |

- sensitivity to errors.

The complexity of points generation

The PM requires 6 additions and 2 divisions per point. If enough
hardware is available then all the additions can be carried out in parallel,
and so can the divisions. Hence the time which is consumed by each
point is between l-add-time plus l~divide-time and 6-add-times plus
2-divide=-times.

The LDM requires 4 multiplications and 2 additions. If the hard-
ware is available then the multiplications can be performed in parallel,
and so can the additions. Hence the time which is consumed per point
is between l-add-time plus l1-multiply-time and 2-add-times plus

4-multiply-times.

15

If the curves are generated by software it is preferred to use
the LDM. If hardware is used then the comparison depends on the

speed and the cost of the components involved.

Variety of curves and speed of generation

The PM can generate only conic segments; ellipses, parabolas,
hyperbolas and straight lines. It cannot generate complete ellipses
and circles. The LDM can generate complete ellipses and arcs of
hyperbolas and generalized parabolas (y = xa) which do not pass through
the origin or through infinity. In addition the LDM can also generate
straight lines, elliptic spirals, stars and various other shapes as

described and illustrated in Section III.

The LDM generates the conics always at a "good-speed "1. The
PM is not always able to generate a conic section at a "good-speed".
For example, it is impossible for the PM to generate a circular arc
at a uniform speed. Because of its good-speed~property the LDM
needs fewer iterations to display a curve than the PM. (See thefigures
in IIIL. 10).

Complexity of the mathematics involved

There is a simple method for finding the parametric matrix for
any conic segment given by its end-points (see II. 7 and [6]). This
method can be used for finding the matrices which together represent
a complete ellipse. However, although it is relatively simple to find
the parametric matrix, as required by the PM, it is not always easy
to perform the shape invariant transformations [4] which are required

to improve the generation speed.

There is no simple way to find the generating matrix for a given
conic segment, as required by the LDM, because finding the matrix is
equivalent to finding sines and cosines. However it is relatively very
easy to find the generating matrix for a conic (not only a segment) from

its implicit form or from its geometrical properties.

il . . : :

A curve is said to be generated at a "good-speed" if the distance
between successive points decreases when the radius of curvature
decreases.

16

The simple manipulation of curves, such as rotation, translation,
stretching and scaling do not have to be performed on each data point.
In the PM all these operations can be performed on the parametric
matrix. In the LDM only the stretching and rotation (in some cases)
have to be performed on the matrix. The other operations do not
need any operation on the matrix, and are carried out by the specifi-
cation of the initial point (and initial difference), because the same

generating matrix generates a whole family of curves.

Sensitivity to errors

Both, the PM and LDM may introduce roundoff errors. These
roundoffs propagate during the iterations, and might result in a large
error after N iterations. We show in this section that the error in
evaluation each polynomial for the PM can be reduced to be less than
g in magnitude at the end points. We can do that because the iteration
involve only additions which do not introduce new roundoff errors. The
LDM uses multiplications which are rounded off, introducing possibly
new truncation errors, of one machine-resolution unit, at each step.
These roundoff errors are accumulated and multiplied by T". Hence
the LDM is more sensitive to errors, then the PM. In some cases the
LDM becomes so sensitive that it cannot be used. For example: A
definition of a hyperbola by its implicit form and a point which is very
close to an asymptote. The reason for this kind of sensitivity is that
the same generating matrix generates a family of hyperbolas which all

converge to the same asymptotes.

The PM does not have a 1-1 correspondence between curves and
matrices, unlike the LDM. It is possible to change the representing
matrix of a curve (even by splitting the curve into some sections) in
order to make the iteration less sensitive. By this operation the sensi-
tivities due to a small denominator, or to small numerators may be

improved.

Unfortunately the generating matrices for the LDM are unique
(up to the generation speed) and do not have any freedom which can be

used for improving the sensitivity to errors.

17

(LI. 7) Mathematical Justifications

The purpose of this subsection is to justify mathematically some

results which are used in the section without proof.

(II. 7. 1) We will define a family of curves, o’ which con-
b
sists of curves in Rn, whose components are polynomials of degree

m in some parameter t. The perspective projection of " into
=1 . : . >
R""" is called here S We will prove the following results:
)

(a) IfSem then S is a conic segment;

25 2
(b) If Sis a conic segment then S € T, 33
b

(c) There exists S € o such that for any P € m, 3 there
)

2,3
>
exists a linear transformation T, such that P is the

perspective projection of TS;
(d) Conics do not intersect themselves.

Let L be the family of curve segments in Rn, with each component
b
being a polynomial in t, with degree not exceeding m. S € G o implies

m : ?
S = {s(t)} = {x(t), x,(t). .. x_(t)} where x(t) = j§o aijt-]. Let T be

y

the perspective projection of O in Pn, the perspective space obtained
5 .
from R" by dividing each component X by X - Note that P is isomor-

phic to the closed Rn-l.

IS = {s(t)} = {x(t), x,(t). .. x(t)} € o, then its projection in
’
P%is:

xl(t) xz(t) xn_l(t)
e

xn(t) 2 xn(t) T xn(t) m,n

P = {p(t)} =

(a) We want to show that if S € T, 3 then S is a conic segment.
)
Proof (following L. G. Roberts [6]): Consider T, 5, with the
b

following notation: x = x;, y = X, and w = X3 Let

2
x = x(t) = x5t +x1t+x0

2
y =y(t) =yt +y;t+y,

2
w =w(t) = wot +w1t +w0

18

In short, this can be written as:

X2 Y2 V2
2
p = p(t) = (X, Yy w) = (t » by 1) 5] y1 W]_ = TA,
*0 Yo Yo

where 7 = (tz, t,1) and A is the above matrix.

If A is a nonsingular matrix, define:

0 o0 1
Gah b iio =2 B & Les st
1 0 0

then:
0 0 1
£ E3 -1 [| e 3k £
pCp = (TA)C(TA) = (TA)A MA YA T)=7|0 -2 0|t =0
1 0 0

for all't. This proves that the arc TA is a conic segment. If A is

singular, then there exists a non-zero vector V such that AV = 0, and
a
b
c
line, which is a degenerate conic.

TAV = pV = (x,y,w) =ax + by + cw = 0. Hence TA is a straight

(b} We proved above that if P € Ty 3 then P is a conic segment (or a line
b
segment, which is a degenerate case of a conic). The converse is more

important: any conic segment belongs to 7, 3" We prove this as follows:
b

*
Proof: Let vCv = 0 be the implicit equation of the conic, and let Vo and
v, be the start and end points of the segment. Let Vi be the intersection
of the two tangents to the conic through Vo and v,. Note that the tangents

L. ! 2 . : 3
do not necessarily intersect in R, but they must intersect in P~.

Consider the matrix

1 -2 1 V1
A=JV=10 2 -2 fvT
0 0 1 Vo

k9

where f is a scalar. It satisfies the following conditions:

(i} fort=1, 78 =V, (L1 1JA=(1,1,1)JV=(L0,00V =y,
(iiy feox €= 0, TA =V, (0,0,1) A =(0,0,1) JV = (0,0,1) V =y
(iii) TA is a conic arc because (TA) C ('rA)>=< = 0 for all t.
This is proved by:
V1 vy ¥ VICVI* fVICvT* VICVO*
VeV =|fvg| ¢l fvn| = fvoCvr fv Cvox sy Cvgr
0 0 vva1’=‘< fVOCVT* VOCVO*
0 0 a
=10 b O
a 0 O
where a = v;Cv_* and b = fzv Cv..*.
1770 T T

XN = b3
vle1 v, .Cv

oCVo 0 because vy and v, are on the conic.

0

* = ® o= i i
vTCvl vleT 0 because vy is on the tangent to the conic

through vy
= b~ 1 i
VTCVO vvaT 0 because of a similar reason.
With no loss of generality we can assume that C is a positive definite
form. In this case, a = v,;Cvy* = v Cvl* <0Oandb = fZVTCV * > 0.

0 0 T
Next we consider the product A C A* =J V C V* J* .

1 -2 1 0 0 a 1 0 O c =c ja
J(VCVH)J* =[]0 2 -2 0O b O -2 2 0O0)]= [-c 4b O
0 0 1 a 0 O 1 -2 1 a 0 O

where ¢ = 2a + 4b. Hence

3 2

(TA) C (TA)* =4(J V C V* J¥)r* = i et et = ctz(l-t) :

20

This expression vanishes for all values of t if ¢ = 0. This con-

dition can be satisfied by the proper choice of f, namely

2 v Oyt

= ZVTCVT*
We showed in (iii) that TA is a part of the conic VCV* = 0, and
we showed in (i) and (ii) that the end points of TA are Vo and vy-
This completes the proof of the converse claim.

(c) Corollary: Any conic segment can be obtained from any non-

degenerate conic segment by a linear transformation.

Proof: Let v, = 'rA be a non-degenerate conic segment. Let

1
vy = 'rA be another segment v, is obtained from v, by the linear
transformat1on T = A1 A as vlT = TA (A A) = frA =V, Note

that if v, is the "canon1ca1 parabola" v = (tz, t, 1) then A1 = I, the
unit matrix, and T = A,, which means that v, is obtained from the
canonic-parabola byusing the representation matrix of v, as the

transformation.

(II. 7. 2) The forward and the backward difference schemes need
initialization by loading the values of Ax (0) or Vi X. (0) to the appro-
priate registers. We will find first Alxl(t) then we w111 find A X. (0) by
substituting t = 0. Later we will find V‘exi(t) and substitute t = 0 to
get the lei(O).

We use the fact that the V and the A are linear operators in the

evaluation of the differences of the polynomial x(t):

A t3 = 3t%5 + 3t6% + 6

A gE = 28 i B
At =06

2% = 610° ¢ 663
Aztz = 20"

& = 66°

21

3 2
3t + azt + alt + aO. Then:

Let x(t) = a
2 : 2 2
£ it = (a15 + a25 + a353) + t(2a25 + 3a35) + 3a35t
B 2 3 2
A”x(t) = (2a25 + 6a35) + 6a36 t
A3x(t) = 6a353
Substitute t = 0 and get:
x(0) = a,
A x(0) = a,0 +a,0° + 2,6°
i a il | 2 3
2 - 2 3
A”x(0) = 2a25 + 6a35
e - 6a353

Find the backward differences by:

v t3 = 3t26- 3t62 i 53

¥ 2 = 26 = 62

v =0

V2t3 = 610> = 66°
Vztz = 262

V3t3 = 6t3

Again let x(t) = a3t3 + azt2 tat+ag. Then:

V x(t) = (a,0-a,6% + a,0%) + (2a,0 —3a352) ¥ 3a35t2
sz(t) = (2a262 - 6a353) + 6a362t
V3x(t) — 6a353

Substitute t = 0 and get:

22

x(0) = a,

V x(0) = alﬁ—azﬁz + ajg
V(0] = zazéz - 6a,0°
VOl0) = 6a363

To summarize: Let the curve be given by

X y W
3 2 bx C bw
[x(t), y(t), w(t)] = [t°,t°, ¢, 1] 4 = TA
c c c
x y w
d d d
X y W
The Forward Differences Scheme:
We showed in (II. 4) that:
x 1 1 0 0\'; x(0)
n
A x 0 1 1 o0 A x(0) -
F(n) = 2n = 5 = s"'F(0)
Axn 0 0 1 1 A" x(0)
A3xn 0 0o o 1/ \a%x(0)
where X = x(n6). Then we showed that:
4 000 1y 6 a
2
a63+bxéz+cxé) S 6% b
F(O) = =
6, 0° % 26 0~ 6 2 0 10 5 || c
X X
6aX63 6 0 0 0 1/ \d

Combine together and get:
[x(nd), y(n0), w(nd)] = [1, 0, 0, 0]S"F(0) = [1,0,0,0]S"QDA
which may be verified by checking that:

[1,0,0,0]S™QD = [(n0) (n8)%nb 1] .

23

The Backward Differences Scheme:

We showed that:

x 1 1 1 1 x(0)
n
V x 0 1 1 1 vV x(0)
n n
B(n) = 2 = 2 = T 'B(0)
N X 0 0 1 1 V™x(0)
Vix_ 0 0 o 1/ \v3xo0)
where X E x(n0). Then we showed that
o o0 o0 1y ;63 a
X
1 -1 1 0 5% b "
B(0) = * |= QDA
-6 2 0 0 6 c
X
\ 6 0O 0 O 1 d

Combine together and get:

[x(nd) y(nd) w(nd)] = [1 0 0 0]T"QADA

which may be verified by checking that:

[1 00 o]TnﬁD & [(n6)3 (n5)2 (n6) 17 .

24

SECTION III

LINEAR DIFFERENCES CURVES

III.1 Summa Ty

We are interested in the family of curves of the form:

m = {P(s)|P(s) = T°P(0) ; 0<s < o}

where T is a 2x2 real matrix, P(0) is the initial point in 2D space,

and s is a continuous variable.

These curves can be displayed by generating the sequence of
points {P(n)} where n is an integer, and connecting successive points
by straight lines. The sequence {P(n)} can be generated incrementally
by using:

P(nt+l) = T P(n)

The simplicity of this iteration makes it very attractive for digital

systems involving either a special hardware or conventional program-

ming.

There are several different definitions for these linear-differences-

curves. The main ones are:
(a) P(ntl) = TP(n) or P(n)= T"P(0)
(b) AP(nt+l) = T,AP(n) where AP(n) = P(ntl) - P(n)
(c) aP(n) = T,P(n)

dP(n) _
(d) dn - T3P(n)
All these definitions are equivalent. In (IIL. 2) below we prove this,
and show the connection between T;, T,, T3 and T. Although we use
only the first of these definitions we want to point out that, for some
applications, the other definitions might be more appropriate, (or

even still other definitions).

1
In (III. 3) below we prove that any origin-centered-conic™ may be

generated by the above process. The proof is constructive and gives a

1An origin-centered-conic is defined by axz + Zt;xy + cyz = d.

25

"recipe" for getting the generating matrix T, for any conic specified

by its implicit form. As corollaries from this theorem we get the
generating matrices for circles and hyperbolas. Each of the generating
matrices obtained by this method belongs to a one-parameter family

of matrices, all of which generate the same curves but at different
speeds. The free parameter can be used to control the generating
speed, for example, by specifying P(l) on the curve; (with P(0) already
specified).

In (III. 4) we show that if two curves are obtained from each
other by a linear transformation, then their generating matrices are
similar (in the usual mathematical sense). As a result we have a
method for constructing the generating matrices for ellipses and

hyperbolas according to their geometrical properties.

In (III. 5) we show that the condition det(T) = 1 implies that T

generates:
(a) an ellipse if Itrace(T)I <2
(b) a straight line if [trace(T)| = 2
(c) an hyperbola if |[trace(T)| >2

Next we are concerned with the "speed" of the conic generatio'n, where
the "speed" is defined as the distance between successive computer-
generated points. In (III. 6) we show that unlike the perspective method, .
the LDM makes it possible to generate a circle with a uniform speed
(i.e., equally spaced points) and hyperbolas with the right kind of
speed (i.e., the speed decreases down as the radius of curvature de-
creases). As a corollary from the equally spaced circle generation
it follows that it is possible to generate ellipses with the right kind of
speed. Next we show the connection between the area of successive
triangles Anl and det(T). In particular we show that the areas of all
the triangles of a conic are constant. This implies that the spacing

on a conic is necessarily good.

lAn is the triangle whose vertices are P(n), P(ntl) and the origin.

26

It is important to mention that the family of conics includes
two kinds of straight lines, the ones which pass through the origin,

and the ones which do not. In (III. 7) we discuss these lines.

In (III. 8) we discuss the curves which are generated by matrices
with a non-unit determinant. We show that for any a, the curve

y = kx" can be generated by the iteration, as well as elliptic spirals.

Finally, in (III. 9) we discuss some programming aspects of

coding the iteration.

(III. 2) The Equivalence of the Various Definitions

We will show that the 4 following definitions of linear-differences
curves, are essentially equivalent, in the sense that they define the

same family of curves.

(a) P_=TP_

-1
(b) APn = TlAPn_1
(c) APn = TZPn
dP

n
(d) dn T3Pn

We will show the equivalence of each definition to (a).

(III. 2. a) (a) implies (b), i.e., if a curve belongs to the family
which is defined by (a), then it also belongs to the family of curves
which is defined by (b).

Pn+1 = TPn) Pn - TPn"l
aP_=P ,,-P =TP_ -TP__,=T({P_-P__)=TAP__; (QED)
(b) does not imply (a), but:
P =AP +P =AP + AP +P =...=AP +...4+ AP
n+l n n n n-1 n-1 n 1
+ AP +P,. =TAP + T 1aP + + AP, + P
0 0~ 0 o " 0 0
= ™ 2P 8 DaP + B

27

Assume that 1 is not an eigenvalue of T, then we can write:
)
AP, = {T = I)P0 .

then

T ! n-1 _ _ o _
P =T+ TV 4.+ T -DP, + P, = T B+ (P, ﬁo)

which shows that (b) defines the same curves as (a) but they might be

A
off-centered by E = PO = PO. The reason for this possible displacement

is that (a) requires only an initial P, but (b) requires initial P, and

0’ 0

APO. If APO = TPO = PO = (T - I)Po then E = 0, and there is no center

displacement.

If 1 is an eigenvalue of T, then T generates a straight line,

which obviously can be generated by (a).

(LII. 2.b) (a) implies (c):

Al =R SR eAT - [P = Th P
(c) implies (a):
Pn+1 = Pn + APn = Pn + TZPn = (TZ t I)Pn

(III. 2. c) (a) implies (d):
P(n) = T®P(0)

d—f’i{lﬂl = (g TYT"P(0) = (fg T)P(n) = T, P(n)

(d) implies (a):
dP(n) _
dn T3P(n)

P(n) = enT3A 5
substitute n = 0 and get A = P(0),
P(n) = (e L 3)"P(0) = T"P{0)
Note that if T has non-positive eigenvalues then there does not exist a

real matrix T3 = g T, and (a) does not imply (d).

28

For displaying an off-centered curve, one can generate the
{P(n)} using (a), and add some displacement to each point, or posi-
tion the initial point P(0), and generate the {aP(n)} using (b). The
latter scheme saves the addition of the displacement to each point,

. and is, therefore, preferred if a special-purpose hardware is not

available.

(III. 3) Obtaining the Generating Matrix for a Conic (Implicit Form)

Theorem: For any given origin-centered non-degenerate conic, there
exists a one parameter family of matrices {T(x)} which

generate the conic, and det[T(k)] = 1 for all k.

Proof: Liet the conic be
a b

P*CP = P* P=a4
b ¢

We construct a matrix T, such that if Pi is on the conic, then so is
P,,, =TP,. Consider P,,. = P, + AP,. Define:
Tkl i i

i+l o
E = (P, + APi)* C (P, + aP,) - P’ik C P,
Expand it:
B = Zax(Ax) % alax) # 2bylAx] * blay)(ax)

+ 2bx(Ay) + b(ax)(Ay) + 2cy(Ay) + c(Ay)2

(ax)-[2ax + 2by + a(Ax) + b(Ay)] + (Ay). [2bx + 2cy + b(Aax) + c(Ay)].
For Ax, Ay and any k which satisfy the following:

Ax = k[2bx + 2cy + b(ax) + c(Aay)]

Ay = -k[2ax + 2bx + a(ax) + b(Ay)]
E vanishes, which means that Pi+1 is on the conic. Separate Ax and Ay:

(I - kb)ax -kc Ay = 2k[bx + cy]

ka Ax + (1 + kb)Aay = -2k[ax + by]

which is in matrix form:

29

Introduce:

then,
(I - kG)aP = 2kGP

The matrix (I - kG) is invertible for all (except two, at most) values
of k:
AP = 2k(I - kG) lGP
-1
P, =P +aP, = [+ 2k(I - kG) G]Pi

Hence T(k) = 1 + 2k(I - kG)-lG. Substitute a, b, c and define e = b2 - ac.

Then for k2 o e-l:

1 1+2kb+k2e 2kc

N et 2R e

T(k) =

It is easy to verify that det(T) = 1, for all k.

b

Consider the trace of T(k):

2
trace(T) = 2 1+k2e

1-k"e

<2 if e<0
trace(T) =¢(=2 if e =0 for all k.
>2 if e> 0

It is well-known that e < 0 implies an ellipse, e > 0 implies an hyperbola,

and e = 0 implies straight lines.

30

Corollary: The generating matrix for the circle x2 + yZ = a is obtained
by substituting a =c=1andb =0 (e = -1):

1 1--k2 2k cos @ -sin 6
T. = ——s -
C 1+k2 -2k l-k2 sin 8 cos @

For the hyperbola x2 = yZ = @, substitute a = =c =1 and b =0 (e = +1):

1 1+k2 -2k chd shd
T = ——— =
B pa® | =z 145® shd chg
where 6 = arctg -21; and 6 = argth —-—Z—kz- .
1+k 1=k

(III. 4) Obtaining the Generating Matrix for a Conic (Geometric Approach)

Theorem: If T generates the curvell, and the linear transformation H,

maps [l into the curve Z, such that £ = HIl then the generating

matrisof 5988 = HER .
Proof: Let Tl = {P(n)} and = = {S(n)} such that S(n) = HP(n) for all n,
then:

Sieily = BSnel] = BT Pln) = HTH | Sia) . QED

Namely, S and T are "similar matrices'", and have the same eigenvalues

(and therefore the same determinant and trace).

This theorem suggests another method for finding the generating
matrices for ellipses and hyperbola. Consider the ellipse, whose axes
are parallel to the X-Y axes, the length of the horizontal axis is 2\,
and the length of the vertical axis is 2p, as shown in Figure III. 4. 1.
This ellipse is obtained from the unit circle by the transformation:

A0
b =
0 p
If this ellipse was tilted by the angle a then it could be obtained from

the unit circle by the transformation R(a)D, where

31

i A

F
2 2
Figure III. 4.1: The ellipse X—Z + Y_Z = 4
AN
cosa ~-sina
R(a) =

sina cosa

1

Hence the generating matrix of the ellipse is E = R(a)DR(G)D- R(-a).
The generating matrix of x2 - y2 =1 is
chd shd
Ty (#) =
shg chyg

Consider the hyperbola in Figure III. 4. 2, which is obtained from

x2 -y =1 by the transformation
cosa -sina N0
H=R(a)D =
sina cosa 0 p

Hence its generating matrix is:

T = R(a)DTH(;J)D—lR(-a)

32

Figure 1II. 4.2: A tilted hyperbola

(III. 5) Characterization of Conics by the Generating Matrices

Theorem: If [= {P(s)|P(s) = TSPO} and det(T) = 1, then [is a

conic, whose type depends on trace(T).

Proof: Assume that T £ tI as these cases generate either P0 re -

peatedly or PO and -P0 alternately. Let

a b
T =
¢ d
Consider the following cases:

(a) |atd| > 2 (b) |atd]| =2 (c) |atd| <2

Case (a): If |[atd| > 2. Consider \, an eigenvalue of T,

e:ré\ﬁ 2 _
N\ = >+ 4(a+d) 1

T can be written as:

T = DR~ where Q = and =

>I—- o

33

D can be written as

-1 1 1 Ch¢ Sh%
Dri= (ST =S where S = and TH =
| shg chd

where chg{ = —;—(X +$1\-) and shg{()\ - %). Hence,

T = QDR = (QS)T,y(@s) "

Ty generates the hyperbola H, and T generates the hyperbola (QS)H.
Case (b): If at+d =2 andc # 0 then:

amle oY 0 oY Jasn B -1
T = = QLQ
c o/{i0 1 c 0
1 1
The matrix L = generates lines since
0 1
7 1 ¢ Yo
P2=LP0= P0=P0+1
0 1 0
Because L generates a line so does T. If a+d = -2 and ¢ £ O then
-1
afl <1y =1 1\ fa4+l =1
=
c 0 0 -1 c 0
-1 1
The matrix generates a line, or two lines, and so does T.
0 =1
If ¢ = 0 then:
= b
o=
g =1

which generates one or two lines.

Case (c): If |a+d| > 2, consider \, an eigenvalue of T,
X :E%Q + i Vl -%(a-i-d)z =e19

34

where cos 6 = -12-(a+d) and

sin @ = Vl -i—(a.+d)2

The sign of sin 8 is chosen to be like the sign of b, because of a
reason that becomes clear later. Note that b # 0 because b = 0 implies
ad = 1, which implies |a+d] > 2. We will show later the existence of
a real matrix Q such that
-1 cos 0 sin O -
T = QTCQ =Q Q
-sin 6 cos 6
As Tc generates the circle C, T generates a linear transformation of
it, which is the ellipse QC. We will construct the matrix Q. As Tc
and T do not determine Q uniquely, we can expect some freedom in
the solution for Q.
-1 X vy cos 8 sin®© w -y a b
QTCQ = = = =
zZ W -sin8 cos8/\-z X c d

Equate components:

(El): a = (xw-yz)cos 8 - (xz + yw)sin 6

(EZ): b =(x+y)sin8
(E3): c =-(z + w)sin 6
(E4): d = (xw - yz)cos 8 + (xz + yw)sin 8

(ES): l=xw-yz.

The identity (xw - yz)2 + (xz + yw)2 S (x2 + yz)(z2 + w2) shows that
one of the equations E; through E4 can be discarded, and we can im-

pose another external condition on the system. We choose y = 0, then

/ b b
o = I
sin 8 Vb sin 6

sin 6

Vb sin 8

1—.
wWw==—=
X

35

d-a _ d-a

L A— =
2x sin® ZVb sin 8

Note that b sin8 > 0. We get:

2b 0
1
Q=———
2Vb sin® d-a 2 sin B

This is the real matrix Q such that T = QTCQ-I, hence

2b 0 cos® sin® 2b 0 al b
d-a 2 sin 8 -sin @ cos 8/ \d-a 2 sin 8 c d
This completes the proof of the theorem.

(III. 6) On the Spacing Between Successive Points

Theorem: Let us consider the circle x2 #F yz =1, and the hyperbola
x2 = yz = 1, both passing through the point Po = ((1)) . The
circle is generated by the matrix TC’ and the hyperbola by

TH where

cos 6 -sin B chg{ shg{
TC i sin 6 cos 6 S TH i shg{ chg{
The point Pn on the circle is
cos(n®b)

sin(n8)

and the point Pn on the hyperbola is

ch(ng)
P = Tano =
i sh(ngd)
Let d be the distance between P and P . We want to
n n n+l

show that dn is constant for the circle, but is an increasing

function of lnl for the hyperbola.

36

Proof: For the circle:

cos(n#®)

P =
n sin (n6)

2

_ 2
dn - (xn+1 Xn) e (yn+1 yn)

= [cos(n+1)8 - cos ne]2 + [sin(n+1)8 - sinne]2

==2 sin—Z-Izl—-l--1 Osin—g-] + [2cos an+1 8 sin _2_]2

2 2ntl 2 2n+l 2

= At —g—[sin 5 @diEes — 3 8] = 4 sin

L
2

which is independent of n.

ch(ng)
For the hyperbola P_ =
| " \sh(ng)
2 2 2
dn B (xn+1 - xn) i (yn+1 B yn)

= [ch(n+l)d - chngf]z + [sh(n+l)g - sh ng{]z

[2 sh 2’;'1;5 sh 2]2 +[2 ch 39;—1;:{ shé]z

i shz g[shz ZnZ+1 gis Chz Zr£+1 4]

DI ‘“25 ch(2n+1)d

which is an increasing function of |n]| .

QED

QED

This theorem is illustrated in Figures III.10.1 through IIL 10. 4.

Theorem: The Areas Law: Let P_ = TnPO and let 7 = det(T). Let S,

be the triangle whose vertices are the origin and the points

P and P . Let A be the area of S . Then, A =7"A -
n n+l n n > "'n 0
Proof:
A == - = ©h) 2P, P
0 = 2xY1 T x1Yg) = 2 (xg¥g) o
-1 0 yl

37

P, GTP,. Similarly

N —

Substitute P1 = TP0 and get AO =

_ -]; E3 n E n
An- 2PO(T Y (GT)T P0
Consider
& a c 0 1 a b =c * a a b

T GT = =
b d -1 0 c d -d b ¢ d
-ac + ac ~-bc + ad 0 7

= = =1G

-ad + bc -bd + bd -r 0

and (T*)nGTr1 = 7'G. Substitute above and get

n* _..n _ ol dh _ n
(T GT]TP, = 5T P GTPO =T AO QED

The reader should notice that although there is a similarity this

is not the Kepler area law.
Corollary: On a conic all the areas {An} are equal.

Corollary: The distance between successive points on ellipses gets

smaller when the distance of the points from the origin gets longer.

It is clear that by stretching a uniformly spaced circle into an

ellipse the uniform spacing is changing into a good spacing.

The first theorem shows that it is possible to generate conics in
good spacing, but because of the second theorem any matrix which

generates a conic, must generate it in good spacing.

(III. 7) Straight Lines as Degenerate Conics

There are two kinds of straight lines which are degenerate conics.

The ones which pass through the origin, and the ones which do not.

The lines which pass through the origin are asymptotes to hyper-
bolas, and are generated by the same matrices which generate the

hyperbolas when the initial points are eigenvectors of the matrices.

38

The matrices T, which generate hyperbolas satisfy det(T) = 1
and trace(T) > 2. These conditions guarantee the existance of two

distinct eigenvectors, which introduce the two asymptotes.

The lines which do not pass through the origin, are arcs of an
ellipse whose major axis is infinite. For example, the ellipse whose
axes are of length infinity and of length b, is the two parallel lines
y = Tp. The implicit form of the ellipse is y2 = pz. Using the method
of (III. 3), and substitutinga =b =0; c =1 (e = -1) we get:

L (1P e 1
T(k} = —— 5] =
14k 0 1+k 0

L a]

—

As expected, trace[T(k)] = 2.

This matrix, with the initial point P = (x, yo)* generates the
line y = Yoo in the positive direction along the ellipse, which is to
the right for Yo >*0 and to the left for Yo < 0. All the points of the
form PO = (xo, 0) are eigenvectors of T, corresponding to the eigen-
value 1, and therefore are not changed by the iteration. It is easy to

show that T does not have any other eigenvectors.

The generating matrices of proper ellipses [det(T) = 1, Itrace(T)] < 2]

do not have any real eigenvectors, and cannot generate any lines.

(II1.8) On Curves Created by Matrices with a Non-unit Determinant

This section suggests, implicitly, building special hardware for
the iteration P(n+l) = TP(n) or AP(ntl) = T AP(n). This hardware can,
as shown before, generate conics. However it is interesting to know
what happens if one iterates with a matrix with non-unit determinant
(which is a necessary condition for conics). In this subsection we

answer this question.

It should be noted that if T has negative eigenvalues then the
function T is not well defined and required an extra care for getting
continuity. However by observing only integer powers of T, most of

this danger is bypassed.

39

(ILLI. 8. 1) Consider the cases 7 = det(T) > 0. The matrix S : T_I/ZT
satisfies det(S) = 1, and S generates some conic. IfS generates an
ellipse then T generates an elliptic spiral which winds outward to
infinity if 7 > 1, or winds inward to zero if 7 < 1. See Figures III.10.5
through III. 10. 8.

If S generates an hyperbola, then T has two distinct eigenvalues,

N and p. If both are positive then we can define a by At = k. Then

which shows that T generates a linear transformation ofy = kx". If
both are negative then -T has two positive eigenvalues. T generates
points which alternate between the curve which is generated by -T
from PO’ and the curve which is generated by -T from -PO. Note that
a = -1 implies an hyperbola, anda = 0 (i.e., 1 is an eigenvalue of T)

implies a straight line. See Figures III.10.9 through I1I. 10, 11.

If S generates a straight line then if 7 # 1, T generates lines
which belong to a family of curves, all of which pass through the ori-
gin, and go to infinity. The shape of these curves is illustrated in
Figure III.10.12. T generates these curves (or a linear transformation

of them). Note that one straight line belongs to this family.

(II1.8.2) Consider 7 = det(T) = 0. If T is a non-zero matrix
then dim[Range(T)] = 1, which means that all {P(s)} belongs to a
l-dimensional space. Hence T generates a straight line through the
origin.

(II1. 8. 3) Consider 7 = det(T) < 0. If det(T) < O then det(Tz) > 0.
Hence Tz generates one of the curves discussed before. Every second
point {P(2n)} which is generated by T is on the curve which is generated
by Tz. The other points {P(2n+1)} are on the curve which is generated
by Tz through P(l). Hence T generates a sequence of points which

oscillate between two curves of the same type.

40

(II1. 9) Programming Aspects of Coding the Linear Difference Scheme

This section suggests an incremental method for generating curves.
We pointed out in (IIL. 2) that the scheme which is used for generating
the {P(n)} can be used for generating the {aP(n)}.

This iteration can be implemented either by conventional pro-
gramming or by hardware. We give in this subsection some "coding-

tips" for programming the linear differences scheme.

(III.9.1) When P(n+l) = TP(n) is coded there is no need to store
the array of {P(n)}, as one can do only with the current value of P,
i.e., the values of x and y. The straightforward coding of the iteration
is:
ax + by —> temp
cx +dy —> vy

temp —> x

The need for the temporary storage "temp'" rises because x cannot be
changed before it is used for the y calculation. However, the iteration
can be defined such that x(n+l) is expressed by means of x(n) and y(n),

but y(n+l) is expressed by x(n+l) and y(n).
Consider the following identity:

a b 1 0 a b

¢ d c/a (ad-bc)/a/ \0 1

Multiply by P(n):

Xntl n n

Yn+l n c/a (ad-bc)/a/\0 1 y

k 0 xn+l

c/a (ad-bce)/c Y,

This may be coded as:

ax + by —»x
ax + By —>vy

41

where a =§' and B = ad b . Ifa=0butd/ 0, a similar scheme works.

This eliminates the need for the temporary storing.
(I1I. 9. 2) The well-known iteration:

x =0y —x
y+0.x —y

generates an ellipse, because y uses the "new" x as set by the first

statement. This iteration can be formulated as:

*n#l T *n T é'yn

2
Yn+tl = Yn ¥ é.xn+1 =(1-9)yn ¥ éxn

or

X 1 —6\ X
P(n+l) = =

= = EP(n)
5 1—62) v

det(E) = 1, trace(E) = 2 - 6% < 2, hence E generates an ellipse.

Yn+1

(III. 9. 3) The iteration:

x+0y —>x
y+5-x ==V

generates a hyperbola, because it is equivalent to:

1) x'
P{(n+l) = 2 = HP(n)
6 1+6 y

n

and det(H) = 1, trace(H) = 2 + 6% > 2.

(III.10) Examples

All the pictures (except III. 10. 2) which are appended to this sub-
section were taken from a PDP-1 program which generates curves

using the method which is discussed in this section.

Figure II1.10.1: A circle generated by 16 segments. Note the uniform

spacing.

42

Figure III. 10.

Figure IIE. L10.

Figure III. 10.

Figure IIL 10.

Figure III. 10.

Figure IIL. 10.

Figure III. 10.

Figure III. 10.

Figure III. 10,

Figure III. 10.

Figure IIL. 10.

10:

11:

12:

A circle which was generated according to the method
which is discussed in Section II. Note the non-uniform

spacing.

2 ellipses. The generated points are marked by
asterisks. Note the "good" spacing, regardless of

the starting point.

A family of hyperbolas, all of which were generated

by the same matrix. Note the good spacing.

A circular spiral which is generated by a circle-
generating matrix, multiplied by a scalar, which

has a magnitude less than 1.

An elliptic spiral which is generated by an ellipse-
generating matrix, multiplied by a scalar whose

magnitude is less than 1.
A star is generated by a rotation matrix, with 8 = 2n/5.

A star spiral is generated by the matrix of picture 7,

multiplied by a scalar whose magnitude is less than 1.

The parabola y = x2 is generated by the matrix
T = diag{a,az}. Each part of the parabola has to

be generated separately.

The cubic y = x3 is generated by the matrix
T = diag{a,a3}. Each part of the cubic has to be

generated separately.

The sequence of points 1-2-3-4-5-6-7-8-9-10 was
generated by the matrix -H, where H is the generating
matrix of the hyperbolas 1-3-5-7-9 and 2-4-6-8-10.

A family of curves which is generated by a matrix
which has two equal eigenvalues; but only one inde-
pendent eigenvector. As discussed before, this
family contains one straight line, which is in this

example the X-axis.

43

(XX

[E R R R RN R RN N RN RSN RN RN NN

SRS NRRSRTRRRRRRRRRRRIR RS

)“- ;

Figure I1I1.10.:

sssssssesssssse

L L L L T

T l.ll.l...-lll.lllll.!.‘.l.l.!ltI.l.i!llll...l'.IlOl'll...Il‘..I..l.......‘l‘l.‘..l....l.... (IELAR T

.
"
.
L]
]
[
H
L]
.
L]
.
!
"
.
.
L
L]
.
L]

Figure 111.10,2

TR

TN R

L N A T

o

Flgure 111,10

Figure 111,10, 5

YRR N F N R N R RN

EE RN

LA R N A T

AR R AR NE]

Ssssssasssssassnannannnnnw

’
.
’
.
.
'
.
.
.
.
.

.-ua--ssnas-tu\-\-------s-ss~ﬂn

Mgure 111.10.8

Figure TT11+10:9

Figure 111,10.10

..

IIIIIIIIIIIIIII

..

Figure I111.10,12

SECTION IV

INCREMENTAL METHODS FOR HIDDEN-LINE ELIMINATION

(IV.1l) Introduction

Producing pictures with hidden lines elimination (HLE) in real
time is one of the biggest challenges in computer graphics. For some
years there have existed some programs for generating pictures with
HLE, like [7], [8], [9], [10], [11], [12], [13], and [14]. All of them
are many orders of magnitude away from real time computation.
There exists only one system which produces images, with HLE in
real time. This is a special-purpose system which was designed and
built by GE for NASA, [15], at a cost of about $3, 000, 000.

Recently, John Warnock of the University of Utah devised an
algorithm [16], which for the first time brings some hope for econo-
mical real time HLE. The programs mentioned before use a
straightforward brute force algorithm which checks each possibly-seen
entity against each possibly-~hiding entity. This checking of "all
against all" makes the required amount of computation to be propor-
tional to the square of the number of defined objects. The Warnock
algorithm (WA) deals with the objects according to the order in which
they are located in the picture, not according to their arbitrary order
in the data structure. The amount of computation required by the WA
grows at a rate less then the square of the complexity. In (IV.2) we
describe briefly the WA, In (IV. 3) we show an incremental approach
to the WA which eliminates redundant computation by organizing the
computation in such a way which saves at any step the information
which can be used in later steps. It is estirnated1 that this approach
can cut the required amount of computation for a typical simple figure
(like the picture of a house), by an order of magnitude. A most time-
consuming problem, which is at the core of most HLE programs, is
finding whether a given point is inside of a given polygon. In (IV. 4)

we show an incremental method for solving this problem.

1By Mr. Warnock and others.

56

(IV.2) A Brief Discussion of the Warnock Algorithm

The WA has two basic logical units, a "control-unit" and a
"looking-unit". The control unit chooses a portion of the picture,
which I call a window, and tells the looking-unit to work on it.

The looking unit considers this specified subpicture (the "window")
and finds what is seen in this window, or announces a failure to find
it, due to a too complex situation. In case of success, the control
unit outputs the results to some display system. In case of failure,
the window is put on a list of "unsolved-windows". Later each un-
solved window is subdivided into some smaller windows, each of
which is given to the looking-unit for consideration. The looking-unit
never announces failure when the size of the window has been reduced
to a sin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>